Course Outcome(CO)

Semester-1		
Course Code	Course Outcomes	
MA-2106	CO1: Clear concept in the fundamental theories and their applications.	
Advanced Engineering Mathematics And Optimization	 CO2: To develop an idea about Optimization and different optimization techniques CO3: Ability to understand and solve Eigen value problems. CO4: Confidence in solving Linear and Non Linear Programming. CO5: Ability to understand Linear and non-linear regression and its application in Structural Engineering. 	
CE-2102 Advanced Mechanics Of Solids	 CO1: To understand the concept of Analysis of Stress and strain in Cartesian and Polar Coordinates. CO2: Ability to understand 3-D stress-strain relation. CO3: To know different types of Theories of Failure. CO4: Confidence in solving a bar subjected to End Torsion. CO5: To understand the concept of Bending in Beams. CO6: To understand and analyse the Elastic Stability of column. 	
CE-2103 Finite Element Method -I	 CO1: To obtain an understanding of the fundamental theory of the FEA method; CO2: To understand the use of the basic finite elements for structural applications using truss, beam, frame, and plane elements. CO3: Students are able to numerically solve for stresses, strains and deformation of a structure under either plane-stress or plane strain conditions. 	
CE-2104	CO1: Clear concepts in the fundamental theories of vibration mechanics.	

Structural Dynamics	 CO2: Developing a command in applied calculus with critical dynamics problems. CO3: Sound knowledge in application of numerical iterative processes. CO4: Developing confidence in solving numerical problems. CO5: Developing clear idea of responses of SDOF and MDOF systems under the action of different kinds of vibrations.
CE-2106 Research Methodologies And Technical Communication	 CO1: To understand the experimental methods, sources of data and data collection CO2: to Solve problems understanding the nature of hypothesis, need for having a working hypothesis. CO3: To know various sampling methods and their application in data analysis CO4: To learn to write journals and conference papers, IEEE and Harvard styles of referencing.
Semester-2	I
CE-2201 Finite Element Method - II	 CO1: To apply FEM for three dimensional problems such as rigid jointed space frames and pin jointed space frames. CO2: To apply FEM for analysis of folded plates and shells and dome structures CO3: To apply FEM for dynamic analysis for pin jointed and plane frames under dynamic loads.

CE-2202	CO1: To understand the concept of prestressing.
Advanced	CO2: To design prestressed beam, girder and portal frames.
Pre-Stressed Concrete	CO3: To analyse prestressed continuous members.
	CO4: To compare prestressed member with RCC members.
CE-2231 - Advanced Design Of RCC Structures	 CO1: Analyse statically indeterminate beams, rigid jointed plane frames by matrix methods. CO2: Apply the basic requirements of Indian standard (IS:456:2000 code) for design of RCC continuous beams. CO3: Analyse statically multi storey frames by substitute frame method and portal method. CO4: Analysis and design of RCC portal frames. CO5: Prepare detailed working drawings and read the drawings for RC continuous beams, Portal frames, slab culvert and deck slab and T-beam bridges. CO6: Apply basic knowledge of engineering principles in the design of unique components of bridges.
	various components of bridges. CO7: Demonstrate the code provisions for the design of bridge components as per specifications of IRC: 6:2000 and IRC: 21: 2000. Design of RCC slab culvert and deck slab and T-beam bridges.
	CO1: To understand the concept of Plastic Analysis.

CE-2236:	CO2: Application of Limit State Method to design tension member,
Advanced	compression member beams and beam-column.
Design of Steel Structures	CO3: Design of Steel Bridges.
	CO4: Confidence in solving problems related with Fatigue Resistant design.
	CO5: Design of structural members subjected to torsion.
	CO6: Design of industrial building.
СЕ-2240 -	CO1: Clear concepts in the fundamental theories of structural dynamics.
Earthquake Resistant Design Of	CO2: Developing application of mathematical techniques in dynamic analysis.
Structures	CO3: Gaining sound knowledge of different seismic analysis procedure.
	CO4: Getting familiar with different ductile detailing provisions.
	CO5: Sound knowledge in design of shear walls.
	CO6: Thorough idea of using IS codes related to seismic analysis and ductility required for buildings.
	CO7: Clear concepts of performance based design.
CE – 2243 – Advanced	CO1: To understand the concept of torsion in non-circular cross sections and thin walled sections.
Strength Of Materials	CO2: Ability to solve the problems related to unsymmetrical bending of beams.
	CO3: To understand and analyse concepts shear centre and shear flow in thin walled beam sections.
	CO4: Ability to understand bending in curved beams.
	CO5: Understand and analyse the beams which are curved in plan